امروزه با پرتاب ماهواره های اختصاصی گرانی سنجی، مدل های ژئوپتانسیل با پوشش جهانی یکنواخت و با دقت و قدرت تفکیک مکانی زیاد تهیه شده اند و ضرایب مربوط به این مدل ها به طور رایگان در اینترنت موجود است. از این رو استفاده ازاین مدل ها یکی از ساده ترین و ارزان ترین روش های تولید داده های گرانی به منظور بررسی طول های موج های بلند میدان گرانی زمین است. البته کماکان مشاهدات زمینی نیز در ایجاد مدل های ژئوپتانسیل ترکیبی نقش دارند که با توجه به تراکم و دقت جمع آوری این مشاهدات،مدل های ژئوپتانسیل در مناطق گوناگون دنیا دارای دقت های متفاوت اند.بنابراین،کاربران مدل های ژئوپتانسیل باید قبل از استفاده ازآنها، از دقت مدل های گوناگون در منطقه مورد نظر اطمینان حاصل کنند.
در این مقاله به بررسی آخرین مدل های ژئوپتانسیل و تعیین بهترین مدل برای منطقه ایران پرداخته شده است. بدین منظور؛ ژئوئید حاصل از هریک از این مدل ها با ژئوئید حاصل از GPS/Leveling مورد مقایسه قرار گرفته است. البته از آنجایی که روی شبکه ترازیابی کشور تصحیح اورتومتریک اعمال نشده است، مقایسه مورد نظر پس از اعمال فیلترهای مکانی مناسب و در آزیموت های گوناگون صورت گرفته است که نتایج بدست آمده برخلاف مقایسه های قبلی، حاکی از دقیق تر بودن مدل EIGEN-GL04C در ایران است.
مدل های ژئوپتانسیل که همان ضرایب بسط پتانسیل زمین به هارمونیک های کروی (بیضوی) هستند،به علت استفاده از مشاهدات ماهواره ای با پوشش یکنواخت و تراکم زیاد در تعیین این ضرایب، طول موج های بلند تابعک های میدان گرانی را به خوبی نشان می دهند.
بهره گیری از مدل های ژئوپتانسیل به منظور کاربردهای زیر بسیار مفید است.
- تعیین مدار حرکت یک ماهواره
- تعیین طول موج های بلند ژئوئید
- تعیین مولفه های جزر و مد زمین
- کاربردهای اقیانوس شناسی و تعیین جریانات دائم اقیانوسی
- برآورد مولفه های چرخش زمین و پارامترهای حرکت قطبی
لازم به ذکر است که در محاسبه ضرایب برخی از این مدل ها تنها مشاهدات ماهواره ای به کار می روند و در برخی دیگر از ترکیب مشاهدات ماهواره ای و زمینی استفاده می شود.به مدل های نوع اول،مدل های ماهواره ای خالص (Satellite-only Global Geopotential Model) گفته می شود و نوع دوم، مدل های ترکیبی (Combined Global Geopotential Model) نام دارند. امروزه پیشرفت روش های گرانی سنجی ماهواره ای و همچنین افزایش تراکم و دقت داده های زمینی،شاهد شمار زیادی از مدل های ژئوپتانسیل هستیم که از سوی شرکت های پژوهشی و دانشگاه های گوناگون در سراسر دنیا محاسبه عرضه می شوند.دقت و تراکم داده های زمینی مورد استفاده در مدل های ترکیبی در مناطق گوناگون دنیا، متفاوت است که این مساله موجب یکسان نبودن دقت این مدل ها در آن مناطق می شود، ازاین رو متناسب با نوع کاربرد و موقعیت جغرافیای منطقه مورد نظر باید نسبت به گزینش مدل مناسب از بین مدل های موجود اقدام کرد. کیفیت مدل های ژئوپتانسیل به دو روش متفاوت ارزیابی می شود؛ در روش نخست به بررسی واریانس درجه خطای مدل ها می پردازیم.این پارامتر همان واریانس مجموع جملات هم درجه در سری هارمونیک های کروی تابعک های میدان گرانی است که در بخش بعد به آن پرداخته شده است.بعد از مقایسه مدل ها،مدلی که دارای واریانس درجه خطای کمینه باشد را در حکم مدل بهینه برمیگزینیم.در روش دوم ارتفاع بدست آمده از مدل های متفاوت را با ارتفاع ژئوئید حاصل از GPS/Leveling مقایسه و مدل دارای اختلاف کمینه را تعیین می کنیم. بدین ترتیب در روش اول، دقت مدل ها و در روش دوم علاوه بر دقت، صحت مدل ها را نیز می سنجیم.از آنجا که مقادیر نسبت داده شده به پارامترهای بیضوی مولد میدان گرانی نرمال (جرم بیضوی، پتانسیل روی بیضوی) تنها دقیق ترین برآورد از مقادیر این پارامترها در میدان گرانی واقعی زمین است، در محاسبه ارتفاع ژئوئید ایران،اثرات مربوط به نبود برابری جرم واقعی زمین و بیضوی مرجع، نبود برابری پتانسیل جاذبه روی ژئوئید و بیضوی مبنا و ترم های تبدیل بی هنجاری ارتفاعی روی بیضوی مرجع به ارتفاع ژئوئید در سطح زمین نیز اعمال شده است.
بررسی واریانس درجه خطای مدل های ژئوپتانسیل
با توجه به اینکه هریک از مشاهدات به کار رفته در تعیین ضرایب یک مدل ژئوپتانسیل، دارای دقت معلومی اند، پس از برآورد مقدار ضرایب، ماتریس کوواریانس یا به عبارت دیگر، دقت تعیین این ضرایب نیز قابل برآورد است. درنتیجه با استفاده از دقت ضرایب پیش گفته می توان دقت هر کمیت دیگری مانند بی هنجاری پتانسیل، ارتفاع ژئوئید، بی هنجاری جاذبه و… که با به کارگیری این ضرایب به دست می آیند را نیز محاسبه کرد. با تقریب کروی از رابطه زیر به دست می آید.
در رابطه فوق و ضرایب هارمونیک های کروی مدل ژئوپتانسیل، ضرایب هارمونیک های زونال برای بیضوی مرجع است. حال اگر دقت ضرایب و را به ترتیب با و نشان دهیم، واریانس درجه خطای این کمیت از رابطه زیر به دست می آید.
در نتیجه دقت ارتفاع ژئوئید محاسبه شده از ضرایب پتانسیل یک مدل تا درجه و مرتبه M برابراست با:
واضح است که با مقایسه منحنی واریانس درجه خطای تجمعی مدل های پتانسیل متفاوت، می توان مدل دقیق تر را به راحتی تعیین کرد. شکل (۱) این نکته را به خوبی نشان می دهد.
شکل ۱- واریانس درجه خطای ارتفاع ژئوئید به دست آمده از مدل های ژئوپتانسیل مورد نظر
شکل ۲- واریانس درجه خطای تجمعی ارتفاع ژئوئید به دست آمده از مدل های ژئوپتانسیل مورد نظر
همانطور که ملاحظه می شود مدل های EGM96 و EIGEN-GL04C و PGM2000A و GGM02C در این دو شکل مورد مقایسه قرار گرفته اند.سه مدل اول همگی دارای ضرایب تا درجه و مرتبه ۳۶۰ هستند و مدل چهارم یعنی GGM02C شامل ضرایب تا درجه و مرتبه ۲۰۰ است.
با توجه به شکل های فوق درمی یابیم که دو مدل EGM96 و PGM2000A با هم تفاوت زیادی ندارند.همچنین دقت مدل های EIGEN-GL04C و GGM02C در طول موج های بلند به مراتب از دو مدل قبلی بیشتر است.برای مثال دقت ژئوئید محاسبه شده تا درجه و مرتبه ۸۰ با استفاده از مدل EIGEN-GL04C حدود ۶ میلی متر است.درحالیکه مقدار مشابه آن در مدل EGM96 به ۲۰۶ میلی متر می رسد (شکل ۱). دقت ارتفاع ژئوئید به دست آمده از مدل های پیش گفته به ازای درجات متفاوت در جدول (۱) دیده می شود.
جدول ۱- دقت ارتفاع ژئوئید بدست آمده از مدل های گوناگون به ازای درجات متفاوت برحسب میلی متر
n=360 | n=200 | n=120 | n=80 | n=40 | Model |
۱۴۶٫۶۵ | ۱۲۰٫۱۳ | ۵۶٫۶۷ | ۶٫۰۳ | ۰٫۸۱ | EIGEN-GL04C |
—– | ۱۹۵٫۲۱ | ۸۳٫۰۶ | ۱۱٫۸۵ | ۱٫۷۷ | GGM02C |
۳۶۵٫۱۹ | ۳۲۸ | ۲۷۴٫۱۱ | ۲۱۵٫۱۸ | ۱۱۱٫۴۸ | PGM2000A |
۳۵۹٫۹۷ | ۳۲۲٫۱۷ | ۲۶۷٫۱۲ | ۲۰۶٫۲ | ۱۰۹٫۲۶ | EGM96 |
با توجه به نتابج فوق،واضح است که مدل EIGEN-GL04C دقیق ترین مدل در بین مدل های فوق است.
مقایسه ارتفاع ژئوئید بدست آمده از مدل های ژئوپتانسیل و نقاط GPS-Leveling در ایران
اگر فرض کنیم که ارتفاع ارتومتریک H و ارتفاع ژئودتیک h صحیح در نقاط پیش گفته در اختیار ما باشد، ارتفاع ژئوئید از رابطه زیر بدست می آید.
ارتفاع ژئوئید حاصل از رابطه فوق دارای تمامی طول موج های متفاوت است و یا به عبارت دیگر از نظر طیفی به یک باند خاص محدود نمی شود. از این رو می توان از آن برای سنجش ارتفاع ژئوئید به دست آمده از مدل های ژئوپتانسیل که فقط شامل باند بسامد محدودی هستند، درمناطق متفاوتی از کره زمین استفاده کرد. به این ترتیب می توان به ازای مدل های گوناگون، جذر میانگین مربعات خطا یا همان ارتفاع ژئوئید مدل و ارتفاع ژئوئید GPS-Leveling را محاسبه کرد و در نهایت آنها را با هم مقایسه کرد.همچنین می توان RMSE تقاوت ارتفاع ژئوئید مدل و تفاوت ارتفاع ژئوئید GPS/Leveling به ازای کلیه طول بازهای موجود در منطقه را برای مدل های گوناگون تعیین نمود و در نهایت آنها را مقایسه کرد.در اینجا به روش اول، مقایسه مطلق و به روش دوم، مقایسه نسبی می گوییم. برتری مقایسه نسبی به مطلق این است که بایاس های موجود در مدل ها و مشاهدات ترازیابی و GPS در این روش به طور کامل حذف می شوند و اثر روندهای موجود روی کمیت های پیش گفته ، در این روش متناسب با طول بازهای مورد
نظر کاهش می یابد. همچنین می توان با دسته بندی طول بازهای گوناگون به ازای طول آن ها و مقایسه پیش گفته در دسته های گوناگون،کیفیت مدل ها را در طول موج های بلند، متوسط و کوتاه آنها، متناسب با انتخاب طول بازهای بلند، متوسط و کوتاه، مورد مطالعه قرار داد. درنهایت، استفاده از هر دو روش در کنار هم پیشنهاد می شود.
در جدول (۲) نتایج مقایسه مطلق مدل های ژئوپتانسیل مورد نظر و نقاط GPS-Leveling در آمریکا،کانادا،استرالیا و اروپا عرضه شده است.همچنین نتایج مقایسه مشابه در ایران در جدول (۳) نشان داده شده است. واضح است که مقادیر عرضه شده در جدول ۲، نتایج بدست آمده در بخش قبل را تایید می کند؛ اما مطابق جدول ۳، در ایران به چنین نتیجه ای نمی رسیم.
جدول ۲-مقایسه مطلق ژئوئید مدل های متفاوت و ژئوئید GPS-Leveling در نقاط گوناگون دنیا برحسب متر
Australia
۲۰۱ points |
Europe
۱۸۶ points |
Canada
۱۹۳۰ points |
USA
۶۱۶۹ points |
Model | |
۰٫۲۴۵ | ۰٫۳۳۵ | ۰٫۲۵۳ | ۰٫۳۳۹ | ۳۶۰ | EIGEN-GL04C |
۰٫۳۷۷ | ۰٫۴۸۷ | ۰٫۳۷۸ | ۰٫۴۷۳ | ۲۰۰ | GGM02C |
۰٫۲۸۶ | ۰٫۴۷۷ | ۰٫۳۶۴ | ۰٫۳۸۱ | ۳۶۰ | PGM2000A |
۰٫۲۹۸ | ۰٫۴۸۴ | ۰٫۳۵۷ | ۰٫۳۷۹ | ۳۶۰ | EGM96 |
جدول ۳- مقایسه مطلق ژئوئید مدل های متفاوت و ژئوئید GPS-Leveling در ایران برحسب متر
RMSE | Model |
۱٫۴۰۸ | EIGEN-GL04C |
۱٫۵۷۵ | GGM02C |
۱٫۰۹۵ | PGM2000A |
۱٫۰۹۱ | EGM96 |
نتایج حاصل از مقایسه نسبی با استفاده از همه طول بازه های موجود در جدول (۴) دیده می شود. همچنین مقایسه نسبی صورت گرفته با افزایش تدریجی در ازای طول بازهای به کار رفته، در شکل (۳) دیده می شود.با توجه به نتایج حاصل از مقایسه نسبی و مطلق در ایران، در نگاه اول به نظر می رسد که مدل EGM96 در مقایسه با مدل EIGEN-GL04C انطباق بیشتری با نقاط GPS-Leveling دارد؛ که این برخلاف نتایج به دست آمده در ه قاره آمریکا، اروپا و اقیانوسیه است. به منظور رفع این تناقض، لازم است که کیفیت نقاط GPS-Leveling در ایران مورد بررسی قرار بگیرد.
جدول ۴- مقایسه نسبی ژئوئید مدل های مختلف و ژئوئید GPS-Leveling در ایران برحسب متر
RMSE | Model |
۱٫۰۵۲۳ | EIGEN-GL04C |
۱٫۲۹۰۱ | GGM02C |
۱٫۰۲۱۷ | PGM2000A |
۱٫۰۱۵۸ | EGM96 |
شکل ۳- مقایسه نسبی ژئوئید مدل های متفاوت و ژئوئید GPS-Leveling در ایران با افزایش تدریجی در ازای طول بازه ها
بررسی کیفیت نقاط GPS-Leveling در ایران
مجموعه نقاط GPS-Leveling موجود در ایران شامل حدود ۴۹۰ نقطه است که پس از حذف نقاط تکراری و نقاط دارای مشاهدات نادرست (نقاطی که اختلاف ارتفاع ژئوئید آنها با ارتفاع ژئوئید مدل EGM96 بیش از ۲ متر است) حدود ۴۵۰ نقطه برای بررسی باقی می ماند. هدف اصلی از گردآوری این نقاط ،کاربرد آنها در تهیه نقشه های پوشی ۱:۲۵۰۰۰ ایران است و بیشتر نقاط پیش گفته بنچ مارک های شبکه های درجه ۲ و ۳ ترازیابی کشورند و شمار اندکی نیز از شبکه درجه ۱ ترازیابی در این مجموعه نقاط وجود دارند. از آنجایی که هیچ برآوردی از دقت مشاهدات صورت گرفته برای این نقاط وجود ندارند،امکان برآورد دقت ارتفاع ژئوئید نیز در این نقاط میسر نیست؛اما با توجه به نوع شبکه های ترازیابی و همچنین هدف اصلی ایجاد این نقاط، می بایست نوفه قابل توجهی را برای ارتفاع ژئوئید بدست آمده در این نقاط درنظر گرفت که مقذار آن فقط از راه مقایسه با مشاهدات جدیدی که در سازمان نقشه برداری کشور صورت می گیرد؛ قابل محاسبه و بررسی است. از سوی دیگر با توجه به این نکته که نوفه مشاهدات، سیگنالی است که قسمت عمده آن را مولفه های با بسامد زیاد تشکیل می دهند،می توان با استفاده از فیلترهای پایین گذر مناسب،نسب به حذف یا کاهش اثر نوفه اقدام کرد. همچنین با توجه به وجود انواع خطاهای سامان مند در شبکه های ترازیابی که رفتار جمع شونده دارند و به طور ویژه اعمال نشدن تصحیح ارتومتریک به تمامی مشاهدات شبکه های ترازیابی کشور در گذشته، که دلیل آن نبود پخش یکنواخت مشاهدات گرانی سنجی در کل کشور است، وجود خطاهای سامان مند در ارتفاع ژئوئید محاسبه شده در این نقاط نیز به صورت یک روند انتظار می رود. با توجه به این نکته که صفر شبکه ارتفاعی ایران در سواحل جنوبی کشور قرار دارد و همچنین با توجه به تغییرات زیاد شتاب گرانی از جنوب کشور به سمت شمال که ناشی از افزایش مناطق کوهستانی در این راستا و افزایش عرض جغرافیایی است و با درنظر گرفتن افزایش مقدار خطاهای سامان مند ترازیابی در مناطق کوهستانی، انتظار می رود که بیشترین اثر روند پیش گفته، روی طول بازهای شمالی – جنوبی دیده شود . لازم به ذکر است که از آنجایی که دلیلی برخطی بودن ماهیت روند یاد شده در ایران وجود ندارد، استفاده از تبدیل های چهار یا هفت پارامتری و نظایر آن ها برای حذف روند، منطقی به نظر نمی رسد.
مقایسه نسبی ارتفاع ژئوئید مدل های ژئوپتانسیل و نقاط GPS-Leveling با درنظر گرفتن اثر روند
تا به حال در مقایسه نسبی بین مدل ها و نقاط GPS-Leveling به راستای طول بازهای انتخاب شده توجهی نداشتیم و تنها طول آنها را درنظر می گرفتیم.علت این امر آن است که در طول نبود روند، به نظر نمی رسد که مقایسه نسبی به آزیموت طول بازهای انتخاب شده وابسته باشد، اما در این مقطع که احتمال وجود روند را بررسی می کنیم، ناچار به درنظر گرفتن مساله پیش گفته نیز هستیم. در شکل (۵) نتایج مقاسه نسبی روی طول بازهایی که آزیموت آنها در بازه های یا قرار دارد،نشان داده شده است.با تغییر از تا ابتدا تنها طول بازهای شرقی – غربی بررسی می شوند و سپس به تدریج دامنه تغییر آزیموتطول بازها افزایش می یابد. بدین ترتیب با نزدیک شدن مقدار به اقر طول بازهای شمالی – جنوبی نیز در نتایج آشکار می شود.با توجه به شکل (۵) واضح است که به ازای مقادیر ، مدل EIGEN-GL04C نسبت به سایر مدل ها دارای انطباق بیشتری با نقاط GPS- Leveling است. به این ترتیب با کنر گذاشتن طول بازهای شمالی – جنوبی و مقایسه نسبی روی طول بازهای باقی مانده، صرف نظر از درازای طول بازها،اثر روند کاهش می یابد و برتری مدل EIGEN-GL04C نسبت به سایر مدل ها دیده می شود. البته نتیجه به دست آمده برای مدل GGM02C به این دلیل است که این مدل فقط شامل ضرایب تا درجه و مرتبه ۲۰۰ است و سایر مدل ها تا درجه و مرتبه ۳۶۰ ضرایب پتانسیل را شامل می شوند.
کاهش اثر نوفه مشاهدات و طول موج های کوتاه با فیلترهای مکانی
همانطور که پیش از این نیز گفتیم، به منظور کاهش اثر نوفه موجود، باید از یک فیلتر پایین گذر استفاده کنیم.عمل فیلتر کردن یک سیگنال را می توان در هر دو فضای مکان و بسامد عملی ساخت،اما برای این کار در فضای بسامد، سیگنال پیش گفته می باید روی یک شبکه منظم از نقاط ، نمونه برداری شده باشد. از آنجا که در مساله فعلی، نقاط ما دارای پراکندگی غیریکنواخت اند، ناچار به استفاده از فیلترهای مکانی هستیم.فیلترهای یاد شده در واقع همان فیلتر Moving Average هستند.با اعمال این فیلترها به یک سیگنال، مقدار سیگنال در هرنقطه با میانگین وزن دار نقطه و نقاط اطراف آن جایگزین می شود.با توجه به طیف تابع وزن یا کرنل میانگین گیری در فضای بسامد، می توان به نحوه عملکرد این فیلترها روی بسامدهای گوناگون پی برد.برای مثال چنانچه به همه نقاط وزن یکسان تعلق گیرد، کرنل در فضای مکان و فضای بسامد به صورت شکل (۶) خواهد بود.همانطور که از شکل طیف کرنل پیداست، وجود پیک هایی در حاشیه طیف پیش گفته نشان دهنده این مطلب است که اثر بسامد های زیاد با استفاده از این کرنل، به طور کامل حذف نمی شود. مورد دیگر استفاده از تابع نرمال یا کرنل گاوسی است که شکل (۷) تابع و طیف مربوط به آنرا نشان می دهد. با استفاده از این فیلتر، اثر بسامدهای زیاد به تدریج محو می شود.در اینجا از نوع خاصی از کرنل گاوسی استفاده کردیم که به نام فیلتر Jekeli شناخته می شود.
شکل ۴- پراکندگی نقاط GPS-Leveling موجود در ایران
شکل ۵- مقایسه نسبی ژئوئید مدل های متفاوت و ژئوئید GPS-Leveling در ایران در آزیموت های متفاوت
شکل ۶- (A) کرنل میامگین گیری یکنواخت به شعاع ۴۰۰ کیلومتر در فضای مکان (B) طیف کرنل فوق در فضای بسامد
شکل ۷- (A) کرنل میان گیری گاوسی به شعاع ۴۰۰ کیلومتر در فضای مکان (B) طیف کرنل فوق در فضای بسامد
حال با اعمال فیلتر پیش گفته روی ارتفاع ژئوئید بدست آمده از مدل ها و نقاط GPS-Leveling به بررسی نتایج می پردازیم.در شکل (۸) نتایج اعمال این فیلتر به ازای شعاع های گوناگون و به ازای دیده می شود.
شکل ۸- مقایسه نسبی ژئوئید مدل های متفاوت و ژئوئید GPS-Leveling در ایران پس از اعمال فیلتر گاوسی به شعاع R
با توجه به شکل فوق ملاحظه می شود که با افزایش تدریجی شعاع کرنل گاوسی، اختلاف بین RMSE مدل های EIGEN-GL04C و EGM96 افزایش می یابد که علت این امر حذف نوفه مشاهدات است.با افزایش مقدار R بیشتر از ۱۵۰ کیلومتر دیده می شود که RMSE مدل های پیش گفته به هم نزدیک می شوند که علت آن حذف طول موج های کوتاه سیگنال ارتفاع ژئوئید علاوه بر نوفه است که باعث کم رنگ شدن برتری مدل EIGEN-GL04C می شود.اما نکته جالب توجه در این بین، بهبود RMSE مدل GGM02C با حذف طول موج های کوتاه سایر مدل ها است که نشان دهنده کیفیت بهتر این مدل در طول موج های کمتر از درجه ۲۰۰ نسبت به دو مدل PGM2000A و EGM96 است.
بحث و نتیجه گیری
در این مقاله با برطرف کردن خطاهای بزرگ،اثرات سامان مند و خطاهای اتفاقی در مشاهادات زمینی که ژئوئید محاسبه شده از مدل های ژئوپتانسیل با آنها مقایسه می شود دقیق ترین و صحیح ترین مدل های ژئوپتانسیل در ایران به دست می آید. با این مقایسه، اعمال اثرات گرانی بر داده های ترازیابی ایزان به منظور تهیه شبکه ارتفاعات اورتومتریک اجتناب ناپذیر به نظر می رسد. البته پردازش داده های مبنا در چنین مقایسه هایی نیز یادآوری می شود.